
 
 

University of Alberta 
 
 
 

Modeling the Volume-Dependent Distribution 

of Categorical Variables 
 

by 

 
Zhou Lan  

 
 
 
 
 

A thesis submitted to the Faculty of Graduate Studies and Research  
in partial fulfillment of the requirements for the degree of  

 
 

Master of Science 

 
in 

Mining Engineering 
 
 
 
 
 
 

Department of Civil and Environmental Engineering 
 
 
 
 
 

Edmonton, Alberta 
Fall 2007 

 
 
 
 
 



  

University of Alberta 
 

Library Release Form 

 
 
 
 
Name of Author: Zhou Lan   
 
 
Title of Thesis: Modeling the Volume-Dependent Distribution of Categorical Variables 

  
 
Degree:  Master of Science  
 
 
Year this Degree Granted: 2007  
 
 
Permission is hereby granted to the University of Alberta Library to reproduce single 
copies of this thesis and to lend or sell such copies for private, scholarly or scientific 
research purposes only. 
 

The author reserves all other publication and other rights in association with the 
copyright in the thesis, and except as herein before provided, neither the thesis nor any 
substantial portion thereof may be printed or otherwise reproduced in any material form 
whatsoever without the author's prior written permission. 
 
 
 
 
 
 
   Signature  



  

 
 
 

University of Alberta 
 

Faculty of Graduate Studies and Research 
 
 
 
 
 
 
The undersigned certify that they have read, and recommend to the Faculty of Graduate 
Studies and Research for acceptance, a thesis entitled Modeling the Volume-Dependent 
Distribution of Categorical Variables submitted by Zhou Lan in partial fulfillment of the 
requirements for the degree of Master of Science. 
 
 
 
 
 

  
Dr. Clayton Deutsch  

 
 

  
                                                                        Dr. Luciane Cunha  
 
 

  
Dr. Carolina Diaz Goano  

 
 

  
Dr. Oy Leuangthong 

 
 
 
 
 

 
 
 



  

Abstract 

Facies is an important categorical variable. In facies modeling, point data and scaled 

up block data must be considered. The scaled up facies proportions form a multivariate 

distribution that is dependent on the volume. 

Back transformation of Logratio values satisfies the order relation constraints (non-

negative proportions that sum to one), but the non-linear nature of the logratio 

transformation and the issue of dealing with zero proportions make it problematic to 

apply logratio in multiscale facies modeling.   

Describing the volume dependent multivariate distribution of facies proportions and 

fitting the distribution at different volumetric supports is the major purpose of this thesis. 

Several parametric statistical distributions will be tested and practical recommendations 

will be made.  

The volume dependent distribution of facies proportions can be predicted using a 

proper parametric distribution. Block kriging and sequential simulation algorithm are 

applied and tested in estimating the 3-dimensional distribution of facies proportions over 

different volumetric scales.              
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Chapter 1  Introduction 

1.1  An Overview 

 A basic problem in reservoir modeling is to build the 3-dimentional realizations of 

facies, porosity and permeability at a sufficiently detailed resolution to provide a reliable 

basis for well planning, volumetric calculations and meaningful effective flow properties 

(Deutsch, 1996). Facies are important in reservoir modeling. Porosity and permeability, 

are highly correlated to facies types.  

Consider a three-dimensional space Ω  with K facies categories 1 2, ,..., KS S S . 

Each location αu  in the space corresponds to a facies category, that is, a set of indicator 

variables ( , )I kαu  ( 1, 2,...,k K= ), such that  

1              if facies at  is  
( , )

0             otherwise
kS

I k α
α

⎧
= ⎨
⎩

u
u  . 

Such facies indicator variables are mutually exclusive and exhaustive (Deutsch, 2002), 

that is, for any location αu , the following is satisfied: 

1

( , ) ( , ') 0          for all '

( , ) 1                 K

k

I k I k k k

I k
α α

α=

= ≠⎧⎪
⎨

=⎪⎩∑
u u

u

i
 

Scaling up the facies categories over a neighborhood vα of location αu , the proportion of 

category kS  is obtained by: 

1( , ) ( , )k v
v

P P k I k dv
vα α= = ∫u u , 1, 2,...,k K= . 

Here in this thesis, capital P is used to denote a facies proportion variable and lower case 

p denotes its value. The values and distributions of proportions ( , )vP kαu , are 

volume-dependent. Figure 1-1 gives a brief illustration of the volume-dependent 
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distribution of the facies categories and proportions. 

 Two important sources of data include well data and seismic data. The well data 

provide accurate measurements at a small scale while the seismic data approximately 

reflect facies proportions at a larger volumetric support. Various other sources, such as 

historical production data, provide information at different scales regarding the facies. 

Integrating data of different scales into reservoir models is a critical issue. Furthermore, 

based on the available data, for some locations, perfect knowledge is available about the 

facies categories and proportions. But for other locations, we must treat the facies 

categories and facies proportions as uncertain. Estimating the multiscale distribution of 

facies categories and proportions and drawing realizations from these distributions is 

important in reservoir modeling. 

This thesis focuses on three problems regarding the multiscale facies modeling: 1) A 

discussion on the order relation constraints and the validity of logratio transformation in 

multiscale facies modeling; 2) Parametric fitting of marginal and multivariate distribution 

of facies proportions over various volumetric scale; and 3) Application of parametric 

facies distributions in reservoir modeling. The topic of each subsequent chapter is as 

follows: 

Chapter 2. Order Relations and Logratios  

Chapter 3. Analytical Fits of the Multivariate Distributions of Facies Proportion 

Chapter 4. Volume Dependent Distribution of Facies Proportions Based on Ordinary Beta 

Chapter 5. An Application of Multiscale Facies Model 

Chapter 6. Further Discussions of Multiscale Facies Modeling 

Chapter 7. Conclusions and Future Works 

1.2  Literature Review    

Much research has been carried out regarding volume dependent distributions of 

facies proportions, particularly related to scaling laws governing the changes in means, 
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variances, covariances and variograms of facies proportions based on different volumetric 

supports. Some of the important previous works include:  

1. Journel and Huijbregts (1978) developed a series of theoretical concepts and theorems 

that are widely applied as scaling laws of categorical variables in geostatistical study:  

For scaled up variable vZ , volumetric support variogram ( )vγ h is defined as: 

  { }21( ) [ ( ) ( )]
2v v vE Z Zγ = −h u u + h  where 

( )

1( ) ( )= ∫v
v

Z Z y dy
v u

u . 

Given two different volumetric supports v and V and the entire space of interest Ω , 

three important concepts: dispersion variance 2 ( , )D v V , average variogram ( , )v Vγ and 

average covariance ( , )C v V were defined and the following relationships were shown: 

      2 2 2( , ) ( , ) ( , )D v D V D v VΩ = Ω +    ( v V⊂ ⊂ Ω  ) 

and 

2 ( , ) ( , ) ( , ) ( , ) ( , )D v V C v v C V V V V v vγ γ= − = − . 

The changes in variograms were shown predictable via a variance-variogram model. 

2.  C. V. Deutsch and P. Frykman (1999) gave a full discussion on semivariogram 

modeling at different volumetric support as well as sequential simulation based on 

multiscale data: the fitted variogram model at arbitrary scale v  is defined as 

0

1
( ) ( )

nst
i i

v v v
i

C Cγ
=

= + Γ∑h h  

where ( )iΓ h represents thi  nested structure, nst the total number of nested structures, 

0
vC  the nugget effect and i

vC  the variance contribution the thi  nested structure. The 

sum of variance contribution equals the dispersion variance; the range of the volumetric 

supported variogram at a larger volume V increases as the increase in volume size 

( | | | |V v− ) in each particular direction; depending on the shape of large volume V , the 

range may increase in some directions and stay the same in other directions; the purely 
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random component, the nugget effect, decreases with an inverse relationship of the 

volume; the changes (decreases) variance contribution of each nested structure along with 

supporting volumes are determined by the average variogram Γ calculated from the 

nested structure iΓ .  

3.  Two basic categories of algorithms are used in mapping the facies codes and 

proportions over a 3-dimentional space: 1) Estimation or interpolation algorithms, as 

named by Xu et al (1992), yield a unique response that is best in some sense. Krigings of 

different types form a critical family in this category. 2) Simulation, or stochastic imaging 

(Xu et al , 1992), provides multiple realizations of the variable of interest.  

Kriging algorithms are widely used to map the facies based on well data and seismic 

data. Kriging with external drift, kriging with locally varying mean, block kriging and 

collocated cokriging are some commonly used variants. Simulation is closely related to 

kriging. Usually, a certain type of kriging (or cokriging) approach is used to build the 

conditional distribution of a variable at a certain location based on the known data, and 

realizations are then drawn from the conditional distribution.  

Sequential simulation (Deutsch and Journel, 1998) is an effective approach in 

modeling the spatial distribution of facies. In the sequential simulation approach, the 

attributes at different locations are treated as a set of jointly distributed variables. The 

local distribution at each location is built based on the values of available data as well as 

those of related covariates. Two widely used simulation techniques for facies variables 

are sequential indicator simulation (sisim) (Deutsch and Journel, 1998) and truncated 

Gaussian simulation (Deutsch, 2002). In truncated Gaussian simulation, the local facies 

data are transformed to continuous Gaussian conditional data and threshold of the 

thk facies ( )t
ky u is set by the cumulative facies proportion ( )kcp u  as 

1( ) ( ( ))t
k ky G cp−=u u . Gaussian simulation approach is applied and the threshold values 

are used to assign the facies categories according to the simulated value. The truncated 

Gaussian approach works well when facies are ordered while sisim works better in case 
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there is no clear ordering. Deutsch (2005) developed an advanced indicator simulation 

program BlockSIS that integrates data of different scales in simulating the facies 

categories at desired local points.  

In most cases, the kriging or cokriging algorithm gives estimates of the means of 

facies proportions but not the estimates of facies proportions themselves. Building 

distributions of facies proportions conditioning on the estimated means and simulating 

realizations from these distributions remains a problem. Some parametric fits of the 

distributions of facies variables over various volumetric supports as well as an algorithm 

to sample from the distributions will be developed.   

1.3  A Brief Description of Facies Proportion Distribution with an 

Introductory Example  

Consider a facies category training image over a three-dimensional space 

256×256×128 in terms of x×y×z coordinates. There are five facies 

categories, 0S , 1S , 2S , 4S and 5S . Figure 1-2 gives the slice maps along the planes x=50, 

y=50 and z=50. Figure 1-3 gives the maps of the vertical facies proportions over the 

horizontal area. In this training image, 0S , 1S  and 2S  are the three most important 

categories and their proportions sum to over 90% in most of the area. Categories 4S and 

5S  take very small part.  

The space is divided into blocks of equal scale using sizes of 2×2×2, 4×4×4, 8×8×8, 

16×16×16, 32×32×32 and 64×64×64 and the proportion of each facies category is 

calculated for each block.  

The following properties can be observed regarding the volume dependent facies 

proportion distribution:  

1)  Maps 

Figure 1-4 gives the pixel plots of facies proportions 0P at various volumetric 
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supports. At small scale, the values of the facies proportions are mostly 0 or 1. As the 

volumetric support increases, more and more possible values for the facies proportions 

0P  occur. The true facies becomes a proportion and not a single category.  

2)  Continuity and Shapes:  

At small scale, the facies proportions have a discrete and bimodal distribution. As 

the scale increases, the distributions turn to continuous, unimodal and symmetric. At scale 

of 1 2 3v l l l= × × , the facies proportions take values from the set 
1 20, , ,...,1
v v

⎧ ⎫
⎨ ⎬
⎩ ⎭

. 

Specifically, at scale of 2×2×2, the facies proportions take some values among 

1 1 3 1 5 3 70, , , , , , , ,1
8 4 8 2 8 4 8

⎧ ⎫
⎨ ⎬
⎩ ⎭

. As the scale increases, a more continuous group of values is 

reached. Looking at the histograms in Figures 1-5 and 1-6, obvious bimodal distributions 

of facies proportions 0P  and 2P  are observed at a small scale and the distributions 

appear discrete. As the volumetric scale increases, more continuous distributions appear 

and the shapes change to unimodal but skewed. Finally, at some scale of volumetric 

support it becomes symmetric. Based on the central limit theorem, for a random sample, 

as the sample size increases, the sum, or equivalently the mean, of the sample indicator 

values will converge to a normal distribution. The facies categories or facies proportions 

are spatially correlated. Nevertheless, the central limit theorem will still partially effect 

the distribution of scaled up facies proportions.        

The marginal cumulative distribution function (CDF) curves give us a clear picture 

about the continuity and shape. Figure 1-7 shows the marginal CDF curves for 

facies 0S for various volumetric scales. At a small volumetric scale, the curves are 

discontinuous and they become more continuous as the scale increase. At the scale of 

64 64 64× × , the CDF curve is close to normal.     

The change of the distribution with scales is also shown in Figure 1-12. Here, p is 



 7

the prior global proportion of the facies category. The value and distribution of kP  

depend on the scale of supporting volume v . For 0v = , ( , )kP I k= u is an indicator 

variable that equals either 1 or 0, and Prob[ 0] 1kP p= = − ,  Prob[ 1]kP p= = . The 

cumulative distribution function (CDF): 

    
1    0 1

( ) Prob[ ]
1        for 1k k

p x
F x P x

x
− ∀ ≤ <⎧

= ≤ = ⎨ ≥⎩
,  

see the red curve in the left of Figure 1-12.  For v = ∞ , the proportion kP p= , and the 

CDF: 

0       
( ) Prob[ ]

1       k k

x p
F x P x

x p
∀ <⎧

= ≤ = ⎨ ∀ ≥⎩
,  

as illustrated by black curve in the left of Figure 1-12. The right of Figure 1-12 shows 

how the distribution of facies proportion 0P  changes between these two extreme cases 

along with volumetric scales.  

3).  Moments:  Means, variances and covariances:   

Given a certain scale v , where n  individual points are located in each block. The 

proportion ( , )vP kαu of facies category kS  can be defined as: 

    
1

1( , ) ( , )
n

i
v

i
P k I k

nα α
=

= ∑u u , 1, 2,...,k K=  

Suppose the entire space of interest is divided into m  blocks of the same size, then 

mean of the proportion kP can be obtained by : 

1 1 1 1 1

1 1 1 1 1[ ( )] ( , ) ( , ) ( , )
m n m n mn

i i l
v k

i i l
E P k I k I k I k

m n m n mnα α
α α

μ
= = = = =

= = = =∑ ∑ ∑∑ ∑u u u . 

The means of facies proportions over the entire area of interest are independent of the 

size of the scale and are equal to the global mean kμ ’s. 

The variance depends on the scale. As described above, according to the results of 
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Journel and Huijbregts (1978): 

2 2 2( , ) ( , ) ( , )D V D v D v VΩ = Ω −  where v V⊂ ⊂ Ω . 

Variance of the scaled up facies proportion decreases as the scale increases, with variance 

reduction factor defined as (Isaaks and Srivastava, 1989): 

2 2 2 2

2 2 2

( , ) ( , ) ( , ) ( , )1
( , ) ( , ) ( , )

D V D v D v V D v Vf
D v D v D v

Ω Ω −
= = = −

Ω Ω Ω
 

Taking as an example the facies category 0S , the mean and standard deviation (S.d.) 

of proportion 0P  are tabulated below: 

Table 1-1  Mean and standard deviation of 0P  at different scales  

Scale 2×2×2 4×4×4 8×8×8 16×16×16 32×32×32 64×64×64 

Mean 0.6648 0.6648 0.6648 0.6648 0.6648 0.6648 

S.d. 0.4514 0.4232 0.3898 0.3232 0.2419 0.1372 

The mean remains unchanged over different scales and the standard deviation decreases 

as the scale increases.  

The covariance value between two variables provides a measure of linear 

dependency between these two variables. Based on the training image, covariance values 

'( , )k kC P P ’s are calculated for all pairs of scaled up facies proportions '( , )k kP P  with 

'k k<  and { }, ' 0,1,2, 4,5k k ∈ . Most of the pairs have a negative covariance. The 

facies proportion variables are subject to a unit sum constraint, that is, the full set of 

facies proportions will sum to 1.0. In the case where only two facies categories exist, the 

increase in the proportion of one category will lead to a decrease in the other. In the 

multivariate cases, with more than two facies categories, things are more complicated but 

the increases in the proportion of one category will lead to the decrease of the total of 

others.  

In Figure 1-11, the absolute values of covariances for each pair are plotted against 
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the volumetric support. Similar to the trend of variances, the absolute covariance values 

decrease along with the increase in volumetric scale.    

4)  Semivariogram:  

 The semivariogram is an important function giving the spatial relationship between 

two points with distance vector h . For a fixed orientation, the variogram indicates the 

difference in the values at that distance. When the orientation changes, the variogram 

values also disclose directional anisotropy (Armstrong, 1998). The semivariogram of the 

facies categories and facies proportions are dependent on the volumetric support 

following the scaling laws as introduced above. Figures 1-8 give the semivariograms of 

facies proportion 0P  in x-direction (in red), y-direction (in green) and z-direction (in 

blue) at various scales. As the scale increases, the sill of indicator semivariogram in each 

direction decreases and the plots flatten, suggesting a trend of more continuity as the 

scale increases. The changes in ranges are not obvious in this case.    

5)  Unit Sum Constraint 

Another property of facies proportions is their unit sum. Suppose only three 

facies 1S , 2S and 3S occur in the whole area, their proportions satisfy:  

1 2 3 1P P P+ + =  with  1 2 3, , 0P P P ≥ .    

That is, all the points ( 1p , 2p , 3p ) lie in the plane determined by this equation, as 

illustrated in Figure 1-9. More precisely, suppose line segments AB , CD  and EF in the 

plane represent the lines on which 1 1max( )P P= , 2 2max( )P P=  and 3 3max( )P P= , 

respectively. Then all the points ( 1p , 2p , 3p ) fall within the area of polygon ABCDEF . 

However, the density of the plane, that is, the frequency of each group of ( 1p , 2p , 3p ) is 

not even and is dependent on the volumetric support. Generally, suppose there are 

K facies categories 1S , 2S ,…, KS  in the area of interest, the point ( 1p , 2p ,…, Kp ) will 

fall on a hyperplane determined by equation: 
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                        1 2 ... 1KP P P+ + + =  

Again, the density of the hyperplane depends on the volumetric support.  

In Figure 1-10, the plots of the facies proportions of three synthetic categories from 

the training image are given. Here 0P  remains unchanged, 1P and 2P  are combined 

and so are 4P and 5P , denote as 1 2PP  and 4 5P P  respectively. At point scale, only 0 or 

1 value occurs and the plots lie on the axis for each facies category.      

 

 

S1

S2

S3

V
...

...

...

SK

p ,p , ... p1 2 k

p1

pK

Ω

 

Figure 1-1 Multiscale facies modeling 
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Figure 1-2  Slice maps of facies categories 
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Figure 1-3  Facies proportion maps 
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Figure 1-4 Scaled up facies proportions 
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Figure 1-5  Facies proportion of 0S  over different scales 
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Figure 1-6  Facies proportion of 1S  over different scales 
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Figure 1-7  Cumulative distribution of proportion of 0S  over different scales 
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Figure 1-8 Semivariograms of facies proportion for 0S  at various scales.  

(X-direction: in red. Y-direction: in green. Z-direction: in blue.) 
 
 

    

Figure 1-9  Facies proportion distribution 
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Figure 1-10  Combined facies proportions (left: scale 4x4x4, right: scale 16x16x16) 
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Figure 1-11  Volume dependent covariances (absolute values) 

Each curve gives the covariance of one pair of facies proportions.  

The horizontal axis gives the scales:  

1: 2x2 x 2; 2: 4 x 4 x 4; 3: 8 x 8 x 8; 4: 16 x 16 x 16; 5: 32 x 32 x 32   

 

 

 



 19

 

Figure 1-12  CDF’s of kP  for Cases 0v =  ( in red ) and v = ∞ ( in black ) 
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Chapter 2  Order Relations and Logratios 

2.1  Order Relations in Facies Modeling 

As introduced in the previous chapter, the facies indicator variables are mutually 

exclusive and exhaustive, that is, for each fixed location αu , the following constraints 

hold: 

1

( , ) ( , ') 0          for all '

( , ) 1                 K

k

I k I k k k

I k
α α

α=

= ≠⎧⎪
⎨

=⎪⎩∑
u u

u

i
 

The scaled up facies proportions are calculated by: 

1( , ) ( , )v
v

P k I k dv
vα α= ∫u u , 1, 2,...,k K= , 

for any given location αu , the following constraints must be satisfied: 

1

0 ( , ) 1    for all  in 1, 2,...,

( , ) 1
v

K
vk

P k k K

P k
α

α=

≤ ≤⎧⎪
⎨

=⎪⎩∑
u

u
. 

This is called the order relation restriction (Deutsch, 2002). 

In facies modeling, data of facies indicator or facies proportions are used to estimate 

the facies categories or proportions at the desired local point or block locations, using 

various kriging and simulation methodologies. Take as an example the simple indicator 

kriging algorithm:  

               

1 1
( , ) ( , ) (1 ) ( )    1, 2,...,n nSK SK SKp k I k p k k Kα α αα α

λ λ
= =

= + − =∑ ∑u u .  

This is a linear combination of the known facies indicators with the weights minimizing 

the kriging error with the following kriging system: 

1
( ) ( ),     1, 2,...,n SK

I IC C nβ α β αβ
λ α

=
− = − =∑ u u u u   

Kriging minimizes the kriging error with no constraint on the range and sign of the 

kriging weights or estimate. It is possible to have a negative estimate or an estimate 
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greater than 1.0.   

The violation of order relation constraints has long been a critical issue in facies 

modeling. Various approaches have been proposed to solve this problem, the following 

are two of the important methods: 

Compositional kriging (CK) suggested by Dennis et al (2001). This is a 

straightforward extension of ordinary kriging, with two additional constraints inserted: 

                  1

1 1

( , ) 0   1, 2,...,

( , ) =1   

n CK

K n CK
k

I k k K

I k

α αα

α αα

λ

λ
=

= =

⎧ ≥ =⎪
⎨
⎪⎩

∑
∑ ∑

u

u
, 

and satisfies the order relation rules. Each constraint is connected to a corresponding 

Lagrange multiplier. The kriging weights are estimated by minimizing the kriging 

variance subject to all the constraints. And kriging estimator is expressed as: 

                   
1

( , ) ( , )    1, 2,...,nCK CKp k I k k Kα αα
λ

=
= =∑u u  

Another important alternative is Posteriori processing (Deutsch, 2002). Here the 

kriging estimated facies probability ˆ IK
ipν  at the unsampled location νu  is set to zero if 

it is negative and the estimated facies probability is adjusted to *ˆ ipν  as below: 

*ˆ ipν =
1

ˆ
ˆ

IK
i

k IK
ij

p
p

ν

ν=∑
,   1, 2,...,i k=  

Now the order relation requirements are satisfied. A relative adjustment is made on the 

Sequential Indicator Simulation procedures by adding the correction after indicator 

kriging.  

The use of logratio transformation of the facies is another possible choice and it is 

attracting the interest of geostatisticians due to its special properties. 

2.2  Logratio Formalism 

Logratio approach is a methodology in analysis of compositional data. According to 

the definition by Aitchison (1986), the compositional data give sample values of a 
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K dimensional space   

{ }1 2 1
( , ,..., ) : 0 ( 1, 2,..., ), 1KK K

K i ii
P P P P i K P

=
= = ≥ = =∑pP  

that is often described by a 1K −  dimensional positive simplex: 

{ }11 1
1 2 1 1

( , ,..., ) : 0 ( 1, 2,..., 1), 1KK K
K i ii

P P P P i K P−− −
− =

= = ≥ = − ≤∑pS , 

and the thK variable is determined directly by  

1

1
1 K

K kk
P P−

=
= −∑ . 

The positive simplex 1K−S  form a principle component of compositional data base 

KP . Facies indicators and facies proportions variables make a typical compositional 

data. 

A Logratio value, denoted by ir , for the facies proportion ip  is defined as: 

ir = log[ ]i

q

p
p

, 1, 2,..., 1, 1,...,i q q k= − +  

where the denominator qp  can be any fixed one proportion among ip ,…, kp . The 

reverse from ir  to ip  is given by: 

ip =

1,

exp( )

1 exp( )

i
k

t
t t q

r

r
= ≠

+ ∑
 for 1, 2,..., 1, 1,...,i q q k= − +  

and 

qp =

1,

1

1 exp( )
k

t
t t q

r
= ≠

+ ∑
 

Directly from the above formulas, the constraints 0 1ip≤ ≤  and 
1

1
k

i
i

p
=

=∑  hold 

for any given set of 1 1 1{ ,..., , ,..., }q q kr r r r− + and thus the order relation requirements are 

satisfied. 

Aitchison (1986) gave a detailed introduction on the logratio analysis for 
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compositional data. Some natures of the logratio transformation are worthy for its 

application in modeling and analysis on the compositional data: 

First of all, there is a one-to-one correspondence between the original data 

( ip ,…, kp ) and the logratio vector ( 1 1 1,..., , ,...,q q kr r r r− + ), therefore any statement in 

terms of logratios can be expressed as an equivalent statement in terms of raw 

components (Aitchison, 1986). 

Secondly, logratio inference obtained from any subcompsition ( (1)p ,…, ( )dp ), 

( )d k≤  , from the parent composition ( ip ,…, kp ) will be exactly the same as the 

inference from the parent composition provided that the same component is applied as the 

denominator.(Aitchison, 1986). Suppose ix ,…, kx  denote, respectively, number of 

samples belong to facies 1S , 2 ,..., kS S  in an area; and (1)x ,…, ( )dx  denote, respectively, 

number of samples belong to facies (1)S ,…, ( )dS  and{ (1)S ,…, ( )dS } { }1,..., kS S⊆ . Then 

logratio ir  for { }1,..., kS S  is 

                    ir =
1 1

log [ ] /[ ]qi
k k

t tt t

xx

x x
= =

⎛ ⎞
⎜ ⎟∑ ∑⎝ ⎠

= log i

q

x
x ;  

and for { (1)S ,…, ( )dS }, we have 

( )ir = ( ) ( )

( ) ( )1 1

log [ ] /[ ]i q
d d

t tt t

x x

x x
= =

⎛ ⎞
⎜ ⎟∑ ∑⎝ ⎠

= ( )

( )
log i

q

x
x .  

( )i ir r=  whenever ( )i iS S=  and ( )q qS S= . This allows us to apply logratio analysis on 

any known facies collection over an area when we don't know exactly how many facies 

occur in the area. 

Furthermore, the logarithmic operation on the ratio i

q

P
P

 often leads to a set of 

approximately normally distributed variables that possess approximate linear 

relationships, making it possible to apply linear regression and linear contrast approach to 
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analyze and model the facies data.      

Finally, the covariance structure of the original compositional data can be expressed 

in terms of a logratio covariance structure, determined by matrix  

∑ =[cov{log( / ), log( / )}]i q j qP P P P   , 1, 2,...,i j k=  

Details about the logratio covariance structure were discussed by Aitchison (1986). 

Due to the above characteristics, logratio transformations and modeling are 

frequently applied in compositional data analysis in various fields such as ecology, 

geology and environmental science, where original compositional data are transformed to 

logratio values. Then a series of statistical analysis will be applied on the logratio data: 

A linear or non-linear model can be built regarding the logratio values and against a 

series of regressor variables acting as factors that will determine the compositional 

variable. In this way, the conditional logratio values can be estimated based on the given 

regressor variables and the significance of each regressor can be tested. The fitted logratio 

values can be back transformed to get the estimated compositional value given the values 

of regressors. 

2.3  Application of Logratios to Facies Modeling 

Facies indicators or proportions at un-sampled locations are estimated or simulated 

according to the facies data. The application of the Logratio formalism in facies modeling 

is straight forward. For kriging, the following steps are applied: 

 Facies proportions are transformed to Logratio data and semivariogram models are 

built based on logratio transformed data, 

 Logratio values at unsampled locations estimated by kriging, 

 Estimated logratio value back transformed to get estimated facies proportions at the 

unsampled location. 

The procedures below will be followed in sequential indicator simulation: 

 The entire space is gridded and all the grid nodes are visited with a random path, 
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 For each of the randomly visited grid nodes, logratio values are estimated by kriging 

and back transformed to get the estimated facies proportions. The local conditional 

CDF (CCDF) of the facies is built based on the estimated facies proportions. 

 Facies category is drawn and assigned to the grid node based on this local CCDF. 

Two critical problems are hard to avoid and lead to fatal risks in facies modeling and 

analysis when logratios are used. They are 1) zero proportion problem, and 2) problem of 

non-linearity. 

2.4  Problem of Zero Proportions 

As discussed above, for any location, an indicator ( , )I i αu  is defined as: 

( , )I i αu =
1    if facies  is  
0   otherwise 

iSα⎧
⎨
⎩

u
 

And the facies proportion can be scaled up to a particular volume of support. A zero 

proportion of a particular facies category is common, especially when the scaled up facies 

proportion is calculated at a small scale where only one or several facies categories may 

occur and the rest will not. A zero value in either the denominator or numerator of 

i

q

p
p

will lead to an undefined logratio value. One way to solve this problem is to apply 

some arbitrary small values, such as 510−  or 2010− , in place of the zero facies 

proportions. 

Another problem then arises: different values, such as 510−  or 2010− , lead to quite 

different logratio values. Using such values into kriging or simulation will lead to 

different estimation results. A number of tests show that the gaussian or uniform score 

transformation of logratios may partially solve the problem.  
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2.5  Non-linearity Problems 

In multiscale facies modeling, facies categories are scaled up to facies proportions 

by the arithmetic average at various volumetric supports. Kriging approaches are applied 

to estimate facies proportions at unsampled locations based on the sampled data. Each of 

these involves a linear average of the data. However, the logratio transformation is not a 

linear transformation of the original values. That is,  

log log logj ji i

q q q q

p pp pa b a b
p p p p

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ ≠ ⋅ + ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
. 

Therefore, back transformation of either the means (arithmetic average) or kriging 

estimates of logratio values will not reach a valid result.  

2.5.1  Problems in block means estimation 

From the formula of inverse of logratio values: 

ˆ
ip =

1,

exp( )

1 exp( )

i
k

t
t t q

r

r
= ≠

+ ∑
 for 1, 2,..., 1, 1,...,i q q k= − +  

and 

ˆ
qp =

1,

1

1 exp( )
k

t
t t q

r
= ≠

+ ∑
 

we have 

ir =
1 1 1

1 1 log log log
nn n

i i i
ni

q q q

p p pr
n n p p p

α α
α

α α αα α= = =

= = =∑ ∑ ∏
�
�

,  

       ( 1, 2,..., 1, 1,..., )i q q k= − +  

reversed and finally reach 

ˆ
ip =

1

i
k

t
t

p

p
=
∑
�

�
 for 1, 2,...,i k=  
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with ipα  the proportion of the thi  facies at position αu  ( 1, 2,...,nα = ), ip� 's the 

geometric average of ipα 's in the sample. That is, back-transforming the arithmetic 

average of logratio values will finally reach a standardized geometric average of the 

proportions, rather than the arithmetic average of the facies proportions.  

The nonlinearity problem can be illustrated through a small example. Assume there 

are only two facies and take two samples from locations 1u  and 2u  with proportions 

for facies 1 at these two sample locations as 11p  and 12p  respectively. The percentile 

contours in Figure 2-1 (solid curves) are obtained by plotting the points of all the possible 

combinations of proportions 11p  and 12p  that result at the same estimated proportion 

1p̂  after back transformation of the mean logratios. Comparing these contours with the 

dot lines in Figure 2-1, which represents the percentile contours of arithmetic average, an 

obvious nonlinearity nature of the logratio reversed proportions 1p̂ is shown. 

The differences (errors) between the estimated 1p̂  and the true 1p  (that is: 

1 1
ˆp p− ) are obvious. Figure 2-2 gives the map of the errors versus 11p  and 12p  while 

Figure 2-3 gives the curves showing a series of the errors versus 11p  for each 

12p ∈ {0.05,0.1,0.15,...,0.95}. These two figures show that the difference increases 

symmetrically as 11p  and 12p  diverge from 0.5. By the way, in Figure 2-3, when 11p  

takes values less than 0.1 or greater than 0.9, the error will go up to 0.5± . 

Parametrically,  

ˆ
ip =

1 2

ip
p p+
�

� �
 ( 1, 2i = ).  

Given a fixed estimated value 1p̂ a= , then  
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12p =
2

11 11
1 2

11 11

1 1
1 1a

a

p p
p pξ−

− −
=

+ ⋅ + ⋅
with 2

1 2a
a

ξ −= .  

Note that 0ξ =  if and only if 0.5a = . Given a fixed estimated value a  for the 

logratio reversed estimated proportion, the relation of the two sample proportion values 

11p  and 12p  for facies 1 are nonlinear unless 0.5a = . This is shown in Figure 2-1. 

As will be further discussed in later chapters, scaled-up proportions at certain 

volumetric support are often estimated directly based on the available point and block 

data. Applying logratios in either up-scaling or down-scaling process is inappropriate. 

2.5.2  Problems with kriging process 

The same problem will also affect the validity of kriging logratios. Taking ordinary 

kriging as an example, 0ip  (proportion for thi  facies at position 0u ) is estimated by: 

0ˆ ip = 1 1 ...i n inp pλ λ+ +  with 1 ... 1nλ λ+ + =  

Similarly, the kriging estimator for logratios takes the form: 

0îr = * *
1 1 ...i n inr rλ λ+ +  with * *

1 ... 1nλ λ+ + =  

that is: 

0îr =

*

*
* * 1
1 1

1

( )
... log

( )

n
i

i n in n
q

p
r r

p

α

α

λ
αα

λ
αα

λ λ =

=

+ + = ∏
∏

,  

reversed and get 

                  *
0ˆ ip

*

*
1

1 1

( )

( )

n
i

nk
tt

p

p

α

α

λ
αα

λ
αα

=

= =

= ∏
∑ ∏

 

Clearly, *
0 0ˆ ˆi ip p≠  and expected value  

             *
0ˆ[ ]iE p

*

*
1

0

1 1

( )
ˆ[ ] [ ]

( )

n
i

i ink
tt

p
E E p E P

p

α

α

λ
αα

αλ
αα

=

= =

⎡ ⎤
⎢ ⎥= ≠ =
⎢ ⎥⎣ ⎦

∏
∑ ∏

  

in general. Therefore, back transformation of a kriging estimated logratio value to the 
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original base will not lead to unbiased estimation. Such errors are hard to fix because the 

αλ 's and *
αλ 's ( 1, 2,...,nα = ) in the above are estimated via two different linear 

regression models and it is difficult to identify the relationship between αλ 's and *
αλ 's. 

2.6  Summary of the Results 

Although the logratio approach can guarantee nonnegative estimated facies 

proportions that also satisfy the unit sum constraint, using the logratio values directly to 

estimate and model the facies proportions will lead to significant bias. Furthermore, back 

transforming the arithmetic average of logratio values will lead to a result of standardized 

geometric average of facies proportions, completely different from the arithmetic average 

that is desired in up-scaling process. Also, the zero proportion problem is hard to avoid. 

These problems make it inappropriate to apply logratios in the multiscale facies 

modeling.  
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Figure 2-1 1p̂  Percentile contours. Each of the solid curves is a collection of 11p  and 12p  that reach 

an identical logratio back transformed estimated facies proportion 1p̂ . Each of the dot lines is a collection 

of 11p  and 12p  that reach an identical arithmetic average 1p  
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Figure 2-2 Map of differences between 1p̂  ("hatP1") and 1p  ("meanP1") 

 

 

Figure 2-3  Difference between 1p̂  ("hatP1") and 1p  ("meanP1"). Each curve represents the difference 

1 1
ˆp p−  versus 11p  under a distinct value of 12p  
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Chapter 3  Analytical Fit to the Multivariate Distribution of 

Facies Proportions 

A precise understanding and estimation of the volume dependent multivariate 

distribution of facies proportions is the basis of multiscale facies modeling. As described 

in Chapter 1, when the scale increases, the facies proportions will change from a discrete 

bimodal distribution to a continuous unimodal distribution; the means of facies indicators 

and proportions will remain constant; however, the variances of facies proportions 

decrease along with the increase in volumetric support. The facies proportion distribution 

changes with volumetric support, as shown in Figure 1-12 in previous chapter.  

Precisely describing and estimating the change in the multivariate distribution of 

facies proportions with volume is a challenge. An analytical description of the 

distribution of facies proportions for a fixed volumetric scale will be our first step. In this 

chapter, several parametric probability distributions and their fit to data are discussed and 

tested. 

3.1  Multinomial Distribution 

Consider K facies categories kS , 1, 2,...,k K= , define 

variable
1

( , )
n

i
k

i
X I kα

=

=∑ u , the number of points where kS  occur within a certain block 

( )v αu , and variable k
k

XP
n

=  the facies proportion. Let kp�  be the prior facies 

proportion for category kS . Then the following conditions are satisfied: 

1) 
1

K
kk

X n
=

=∑ , where n  is the number of grid nodes in the block 

2) 
1

1K
kk

p
=

=∑ �  

The above characteristics suggest a multinomial distribution of 
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variables kX , 1, 2,...,k K= , that is  

1 2
1 1 1 2

1 2

!Prob( ,..., )
! !... !

Kx x x
K K K

K

nX x X x p p p
x x x

= = = ⋅⋅⋅� � � . 

Where kx  denotes the value of variable kX . For each individual category kS , the 

marginal distribution of kX  is binomial with probability mass function (PMF) 

Prob( ) (1 )k kx n x
k k k k

k

n
X x p p

x
−⎛ ⎞

= = −⎜ ⎟
⎝ ⎠

� � . And the scaled up local facies proportion kP  

follows a distribution with PMF: 

[ ] [ ]( ) Prob( ) Prob( [ ]) (1 )
[ ]

ny n ny
k k k k

n
f y P y X ny p p

ny
−⎛ ⎞

= = = = = −⎜ ⎟
⎝ ⎠

� � , 

1 20, , ,...,1y
n n

⎧ ⎫∈⎨ ⎬
⎩ ⎭

  

and the cumulative distribution function: 

[ ]

0
( ) (1 )

ny
i n i
k k

i

n
F y p p

i
−

=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ � � , [0,1]y∈   

where [ ]ny  is the integer part of ny .    

One important assumption for the binomial distribution is that the indicator variable 

( , )I kαu  and ( , )I kβu  are independent from each other for any different locations αu  

and βu . However, this is not true with facies variables. See an illustration of 

semivariogram in Figure 3-2, those points with distance less than range a  are positively 

correlated and those with variogram values above the sill are negatively correlated. Only 

those with variogram value at the sill can be considered as independent. Figure 3-1 gives 

the histograms from simulated multinomial realizations, which are obviously different 

from the true histograms. Here the parameter n  denotes the volume of the scale, i.e., at 

scale of 2 2 2× × , has 8n = . 
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3.2  Beta Distribution 

The Beta distribution is defined for a random variable X within a closed interval [0,1] 

and has the probability density functions (PDF): 

        1 1( )( ) (1 )
( ) ( )

f x x xα βα β
α β

− −Γ +
= −
Γ Γ

 

where the gamma function ( )zΓ is defined as 1

0

( ) z tz t e dt
∞

− −Γ = ∫  and has an important 

property: 

( 1) ( )z z zΓ + = Γ . 

The shapes of the CDF curves are determined by the parameters α  and β . Based on 

the known expected values (global mean kp� ) and variances ( )v kVar P , the parameters 

α and β are determined as: 

(1 )[ 1]
( )

k k
k

v k

p pp
Var P

α −
= −

� ��  and 
(1 )(1 )[ 1]

( )
k k

k
v k

p pp
Var P

β −
= − −

� �� . 

Furthermore, let Ω be the entire space of interest, and 2 ()kD  be the dispersion variances 

of proportion kP based on certain supports, then 

 
2

2

(1 ) ( , )1 1
( ) ( , )

k k k

v k k

p p D
Var P D v

− • Ω
− = −

Ω
� �

=
2

2 2

( , ) 1
( , ) ( , )

k

k k

D
D D v

• Ω
−

• Ω − •
=

2

2 2

( , )
( , ) ( , )

k

k k

D v
D D v

•
• Ω − •

 =
1

1θ −
 

where  
2

2 2

( , ) (1 )
( , ) ( , )

k k k

k k

D p p
D v D v

θ • Ω −
= =

• •
� �

 

That is:  
1

kpα
θ

=
−
�

 and 
1

1
kpβ

θ
−

=
−
�

, with θ  defined as above. 

The expected values and variances are calculated as follows: 
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[ ]v kE P α
α β

=
+

,   2[ ]
( ) ( 1)v kVar P αβ
α β α β

=
+ + +

. 

Figure 3-3 gives a comparison between the true distributions (left) and simulated beta 

distributions (right) for 0P  at various scales while Figure 3-4 gives the overlapped 

curves of true CDF’s and beta simulated CDF’s for 0P  and 1P .   

The beta simulated realizations give good reproductions of the marginal distributions 

at most scales and for most facies categories. The Frequencies of extreme proportion 

values (around 0 and 1) are slightly over or under estimated, making the simulated CDF 

curves over-smooth at both ends. When ( ) 0v kVar P → , both α , β →∞ , the 

distribution goes to a normal distribution. Figure 3-5 gives the simulated realizations for 

0P at α and β  values based on some very small variance and it is a normal distribution 

with mean 0p� =0.6648. Some other training images are tested and similar results are 

obtained for categories with reasonable prior global proportions. For those categories 

with extreme prior proportions, e.g., greater than 0.99 or less than 0.01, the beta 

distribution does not reproduce the true. Figure 3-6 gives some examples.  

3.3  Multivariate Fitting (1) - Dirichlet distribution 

A generalized form of beta distribution, the Dirichlet Distribution, is considered to fit 

the joint distribution of 0P , 1P ,…, 1KP − . A Dirichlet distribution (Kotz et al, 2000), is 

defined for n  random variables 1 2, ,..., nX X X , with values 1 2, ,..., nx x x , and has the 

joint probability density function (joint PDF) given as: 

11

1
1

( )
( ; )

( )
i

n
n

ii
in

iii

f xα
α

α
−=

=
=

Γ
=

Γ
∑ ∏

∏
x α   

where 1 2, ,..., [0,1]nx x x ∈  and  
1

1
n

i
i

x
=

=∑ . And 1 2, ,..., nα α α  are the shaping 
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parameters. The expected value and variance of each variable are given as: 

1

[ ] i
i n

ii

E X α
α

=

=
∑

,  and  1

2
1 1

[ ]
[ ]

[ ] [ 1]

n
i j ij

i n n
i ii i

Var X
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Let iβ =
1,

n

j
j j i

α
= ≠
∑ and we get:  

            [ ] i
i

i i

E X α
α β

=
+

,   and  2[ ]
( ) ( 1)

i i
i

i i i i

Var X α β
α β α β

=
+ + +

 

And it can be shown that the marginal distribution of iX  follows a beta distribution with 

parameters ( ,i iα β ). (Kotz et al, 2000) 

 Taking into consideration the constraint 
1

1
n

i
i

X
=

=∑ , only 1n −  variables are free 

and 
1

1

1
n

n i
i

X X
−

=

= −∑  . The the joint PDF for Dirichlet distribution can then be expressed 

as: 
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Now come back to facies proportion 0P , 1P ,…, 1KP − , the joint PDF can then be fitted 

as: 
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Or, taking into consideration the constraint 
1
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=
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 One problem occurs in fitting parameters 0 1 2 1, , ,..., Kα α α α − . In case there are only 

two facies categories, it is simplified to a standard beta distribution and parameters 

α and β are uniquely determined by mean and variance of any one of the two facies 

proportions. In cases more than two facies categories occur, the following conditions 

should also be satisfied: 

1

[ ] i
i n

ii

E X α
α

=

=
∑

,  and  1

2
1 1

[ ]
[ ]

[ ] [ 1]

n
i j ij

i n n
i ii i

Var X
α α α

α α
=

= =

−
=

+

∑
∑ ∑

, 1, 2,...,i n=  

Here values of n  variables, 1 2, ,..., nα α α , need to be determined satisfying 2n  

constraints.  

 One possible way might be focusing on the expected values and use only the 

variance of the most important category. From the mean constraints, we reach:  

                 
1

[ ] [ ]n
i i j ij

E X E Xα α υ
=

= ⋅ = ⋅∑  for all 1, 2,...,i n= , 

where υ  denotes the sum of α ’s. Substitute this into the constraint regarding 

[ ]dVar X  for the selected important category dX  and leads to: 

[ ] (1 [ ]) 1
[ ]

d d

d

E X E X
Var X

υ ⋅ −
= −  

and 

                    [ ]i iE Xα υ= ⋅    for all 1, 2,...,i n= . 

10000 realizations are simulated, using the variance for facies category 0S  when 

fitting the parameters. For facies proportion 0P , the simulated CDF’s are very close to 

those from beta distribution. Figure 3-7 gives some cross plots of joint CDF’s from the 

real data versus the joint CDF’s from the Dirichlet simulated realizations for other facies 

categories. 

The shapes of the marginal distributions are approximately reproduced, particularly 

for the cases of smaller scales. The mean proportion of each facies category is 
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approximately reproduced. The variances for facies proportion 0P are reproduced at 

different scales of volumetric support, while the variances for other facies categories are 

over or under estimated to some extent. For 1P  and 2P , the estimated variances are 

close to the real levels, but for 4P and 5P , the variances are over-estimated and the 

shapes of distributions change particularly at a larger scales of supports. In Figure 3-8, the 

joint CDF’s are approximately reproduced by Dirichlet distribution at small scales, but 

not at the larger scales.      

3.4  Multivariate Fitting (2) – Ordinary Beta 

3.4.1  Fitting of the parameters 

One possible solution to the problem of not reproducing all of the variances in 

Dirichlet distrbution lies in a generalized beta distribution introduced by Mauldon (1959).  

Mauldon defined an integral transformation ( βφ ) of n  random variables 

1 2, ,..., nX X X  with joint CDF ),...,,( 21 nxxxF :   

[ ] ∫ ∫ ∑∫∑
∞

∞−

∞

∞−

−
=

∞

∞−

−
=

−=−= ),...,()(...)( 111 n
n

j jj
n

j jj xxdFxatxatE ββ
βφ     

and defined 1 2, ,..., nX X X  as forming an −n dimensional beta distribution when there 

exist parameters ijc  and iβ  ( ri ,...,2,1= ) such that  

βφ =∏ ∑
=

−
=

−
r

i

n

j ijj
icat

1
1

)( β  where ∑ =
=

r

i i1
ββ  

Those parameters ijc ’s form a coordinate matrix. Mauldon showed that when the 

coordinate matrix is a unit matrix (with all ijc =1), and 1 2, ,..., nX X X  fall within (0,1) 

and 1 2 ... 1nX X X+ + + = , the joint PDF has the form: 
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∏∏ =

−

Γ
Γ
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1
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)(),...( β

β
β

 

Mauldon called it the basic beta distribution. It is in fact the Dirichlet distribution 

discussed above. Mauldon also showed that any −n dimensional beta distributed 

variables 1 2( , ,..., )KY Y Y=y can be obtained by M=y x  from basic beta distributed 

variables 1 2( , ,..., )nX X X=x  through matrix M . Mauldon named this the Ordinary 

Beta.   

    The results of Mauldon are helpful in solving our problem. Let 

1 2( , ,..., )KP P P=p be the K  facies proportions, the joint distribution can be modeled by 

M=p x  where 1 2( , ,..., )KX X X=x  forms a Dirichlet distribution with  

[ ] i
iE X β

β
=  and 2

( )[ ]
( 1)

i i
iVar X β β β

β β
−

=
+

 

and 

[ ] [ ]E M E= ⋅p x , [ ] [ ] TCOV M COV M= ⋅ ⋅p x  

where [ ]COV x  denotes the covariance matrix of variable vector x and TM  the 

transpose of matrix M . Solving the above equation systems will results in the estimated 

matrix M  and parameters iβ ’s that make 1,..., KP P honor population means, variances 

and covariances.  

Specifically, if a diagonal matrix is used: 

11

22

0 0
0 0

0 0 KK

a
a

M

a

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

…
…

# # % #
"

, 

and x =( 1 2, ,..., KX X X ) form a K − dimensional basic Beta (Dirichlet) distribution 

with parameters iβ  ( 1, 2,...,i K= ), the following system will be reached: 
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Or, equivalently:   
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This system is solved for iia  and iβ  and thus we reach variables M=p x  that honor 

both the means and the variances. One problem is that the values 1 2, ,..., Kp p p are not 

guaranteed to fall within [0,1] or to sum to one. This problem can be solved by resetting 

negative values to zero and restandardizing by: 

*

1

i
i K

jj

pp
p

=

=
∑

   1, 2,...,i K=  

Figure 3-9 gives cross plots of the real joint CDF’s versus the simulated joint CDF’s. 

The joint CDF’s are well reproduced at small scales and also reproduced at large scales. 

Several other training images are tested and the similar results are obtained. If a full 

matrix M is adopted, the covariances can also be honored and a better fit can be 

expected. But that will require solving a very complicated equation system.  

3.4.2  Limitation and Solution 

One major problem that might occur in ordinary beta distribution fitting lies in the 

roots of β , iβ ’s or iia . The system discussed above will finally lead to equations of 
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thK order polynomials. Sometimes in each group of solutions, values for β , iβ ’s or iia  

are not all positive. It is also possible that no real root exists. Fortunately, repeated tests 

suggest that all the non-real roots and most of the non-positive roots occur in those 

extreme situations where the expected values [ ]kE P  for some k  in 1,2,…, K are greater 

than 0.99 or less than 0.01. Note that for all 0 1kP≤ ≤ : 

           2 2 2[ ] [ ] ( [ ]) [ ] ( [ ]) [ ]k k k k k kVar P E P E P E P E P E P= − ≤ − ≤ . 

910 pairs of uniformly distributed random vectors ( u , v ), 5-dimensional or 

4-dimensional, are drawn such that 0.01 ( ) 0.99i< <u and 0.0005 ( ) ( )i i< <v u , 

treated respectively as [ ]E p and [ ]Var p  and do the test. Real roots occur in all the 

cases and positive roots occur in more than 97.5% of the cases. In case all real roots were 

negative, a slight reduction on the required variances lead to positive roots. Based on this 

observation, when building the conditional distribution, values 0.99 and 0.01 can be 

assigned to [ ]kE P  when an extreme value greater than 0.99 or less than 0.01 occurs. 

The result will be very close to the original one. The problem of non-positive roots can be 

solved by slightly reducing the maximum of the target variances.   

3.4.3  Joint PDF for ordinary beta distribution 

    The parametric joint PDF for ordinary beta distribution can be derived applying 

Jacobian transformation rule. In the transformation M=p x , where x  forms a 

Dirichlet distribution with joint PDF:  

1
1 1

( )( ,... )
( )

jK
K jj

i

f x x xββ
β

−

=

Γ
=

Γ ∏∏x  

and M an invertible matrix with inverse 1M − =[ ]ijb , , 1, 2,...,i j K= , then 

                   1M −=x p      
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or equivalently ( )iX p =
1

K
ij jj

b P
=∑  ( , 1, 2,...,i j K= ). The Jacobian matrix for such 

transformation can be expressed as:   

J =[ ]ijs , where 
( )i

ij
j

xs
P

∂
=

∂
p

= ijb   ( 1, 2,...,j K= ).   

That is: J = 1M − . Denote the determinant of the Jacobian matrix J  as det( J ) and its 

absolute value as | det( ) |J , applying Jacobian transformation rule, the joint PDF for p  

is resulted as:          
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In case diagonal matrix is applied for M : 
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where, as previously discussed, iiα >0  for all 1, 2,...,i K= , the joint PDF fp  can be 

simplified as:     
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and joint CDF is derived as:    
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In order to satisfy the order relation constraints, further adjustment is done by:  

*
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i
i K

jj

pp
p

=

=
∑

   1, 2,...,i K= . 

Again, the Jacobian matrix takes the form 2J = *
ijs⎡ ⎤⎣ ⎦  with 

*
ijs  = 

*
* * *

1*

( ) ,   ( ,..., )i
K

j

p p p
p

∂
=

∂
p p    

Finally, using 1( ,..., )Kp p=p to denote the fitted facies proportions, its joint PDF has 

the form: 

1( ,..., )Kf p p
p

=
1

1 21

1

( ) ( ,..., ) | det( ) |
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j KK j
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with iθ ’s determined by 
1

K
i i jj

p θ θ
=

= ∑ , that is:               

              
1,

(1 ) = 0    1, 2,...,K
i k i ik k i

p p i Kθ θ
= ≠

− − =∑ .  

and Jacobian matrix  

2J = *
ijs⎡ ⎤⎣ ⎦   where *

ijs  = 
( )i

jp
θ∂
∂

p
. 

The above formalism is complicated. In practice, the joint CDF’s can be 

approximated via large size (say 10000) of simulated sample realizations. 

  



 44

 

  

  

Figure 3-1  Binomial simulation ( kp� =0.665 ) 

 

 

Figure 3-2 Semivariogram 
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Figure 3-3  Beta simulated distributions. Histograms from data (left) compaired with the  

simulated Histograms (right) 
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Figure 3-4  Real marginal CDF’s overlapped by Beta simulated CDF’s 
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Figure 3-5  Beta simulated distribution for 0P at a very small variance 

 
 

 

 

Figure 3-6  Beta simulated fits with prior global proportion 0.0047. The CDF’s of simulated  

realizations lie below the real CDF’s 
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Figure 3-7  Real marginal CDF’s overlapped by Dirichlet simulated CDF’s 
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Figure 3-8  cross plots of real joint CDF’s versus Dirichlet simulated joint CDF’s 
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Figure 3-9  Cross plots of real joint CDF’s versus Ordinay Beta simulated joint CDF’s 
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Chapter 4  Volume Dependent Distribution of Facies 

Proportions Based on Ordinary Beta 

4.1  Formalism  

As discussed in the previous chapter, an ordinary beta distribution is determined by 

the means and variances of the facies proportions 1P , 2P ,…, KP . The means remain 

constant and the variances are determined by the volumetric support and 

variance-covariance structure of facies categories over the entire 3-dimensional space of 

interest.  

The key problem is to determine the variances of facies proportions based on the 

volumetric support and scaling laws. Journel and Huijbregts (1978) introduced the 

theoretical concepts and formalism of scaling laws. Deutsch and Frykman (1999) gave 

further development as well as the discussion on its applications.  

Given a certain volumetric support v , the variogram model is expressed as: 

0
1

( ) ( )nst i i
v v vi

C Cγ
=

= + ⋅Γ∑h h         

where 0
vC  is the nugget effect, nst is number of nested variogram structures applied, 

i
vC  ( 1, 2,...,i nst= )  are the variance contributions of the thi nested structure used in 

the variogram model, and ( )iΓ h the elementary licit variogram function for the 

thi nested structure. Both the nugget effect 0
vC  and variance contribution i

vC  are 

determined by variance-covariance structure and the volumetric support. Given the 

reference variogram model at some volumetric support 0v , the nugget effect at scale v  

can be obtained by: 

0

0 0 0| |
| |v v
vC C
v

= ⋅   



 52

and the variance contribution of the thi nested structure is obtained by: 

0
0 0

1 ( , , )
1 ( , , )

i
i i
v v i

v vC C
v v

−Γ
=

−Γ
a
a

  

where ( , , )iv vΓ a  is the average variogram at volumetric support v  calculated based 

on the thi nested structure in the variogram model. The vector of ranges in the three 

directions 

                        ia =( , ,i i i
h major h minor verta a a− − ),  

corresponding to the thi  nested structure and is determined by the volumetric support 

via: 

0( ) ( )i ia v a v v= ++   

with v+ the change volume size 0(| | | |)v v− in each particular direction.  

The calculation of average variograms ( , , )iv vΓ a  can be done with gammabar 

program in Gslib (Deutsch and Journel, 1998) using the semivariogram models for point 

data. Given the variogram model at some reference volumetric support 0v , the above 

algorithm is first applied to obtain the point variogram model and then extend to any 

desired scale.   

The variance of the scaled up proportion at volumetric support v  is the dispersion 

variance and is the sum of variance contributions at this volumetric support, that is: 

2 0
1

( , ) nst i
v vi

D v C C
=

Ω = +∑     

where 2 ( , )vD v Ω gives the variance of scaled up values at v  over the entire area of 

interest Ω .  

Another way to calculate the variance of scaled up facies proportion is : 

 

2 2 2( , ) ( , ) ( , )D v D D vΩ = • Ω − •  



 53

where  

2 ( , ) ( , )D γ• Ω = Ω Ω  and 2 ( , ) ( , )D v v vγ• =  

Taking the entire space of interest as the target population, the above formalism 

suggests a function 2
0( , ; )v vσ Ω for variance (global) of the scaled up facies proportion 

for each facies categories at volumetric support v conditioning on the reference 

variogram model at some scale 0v . Specifically, 2
0( , ; )k v vσ Ω  is used for the thk  

facies category.  

The ordinary beta distribution has joint probability density function (joint PDF) 

fitted based on the parameter matrix M and vector β  that are determined by the means 

( km ) and volume dependent variances ( 2
kσ ). Therefore the joint distribution of scaled up 

facies proportion can be modeled by  

1( ,..., ; , )Kf p p Mp β , with 

2
0( , ( , ; ))M M v v= Ωm σ and 2

0( , ( , ; ))v v= Ωβ β m σ  , 

where m is the vector of volume independent means and 2
0( , ; )v vΩσ the volume 

dependent variance vector determined by the formalism as discussed above.  

4.2  Sample Test 

This sample is from the training image as described in Chapter 1. Here the point 

scale is the reference scale and the indicator variogram models are as in Table 4-1. The 

variances for facies proportions at volumetric supports 2 2 2× × , 4 4 4× × , 8 8 8× × , 

16 16 16× ×  and 32 32 32× ×  are calculated using the methods described in the 

previous section and tabulated in Table 4-2. The means of facies proportions are constants 

for all volumetric support (as given in Table 1-1). Applying the algorithm as discussed in 

Chapter 3, the parameter matrix M and parameter vector β are estimated and the 
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ordinary beta distribution is built. 500 realizations are then simulated and tested. 

Figure 4-1 gives the simulated histograms for 0P  at various volumetric supports. 

Compared with the real histograms as shown in Figure 1-2 above, the marginal 

distributions for 0P  are approximately reproduced by the simulated distributions. The 

simulated histograms of other facies proportions also compare well.  

The cross plots of real versus simulated joint CDF’s are shown in Figure 4-2. For 

various volumetric supports, the cross plots are close to a 45˚ line, suggesting a 

reasonable reproduction of the global joint CDF’s by the simulated realizations.  

   

Table 4-1  Indicator Variogram Models 

Facies Categories Variogram Models 

0S  2    0.002157533                       -nst, nugget effect 

1    0.1510273  90.0   0.0   0.0     -it,cc,ang1,ang2,ang3 

                  35.0   50.0  30.0    -a_hmax, a_hmin, a_vert 

1    0.0625685  90.0   0.0   0.0     -it,cc,ang1,ang2,ang3 

                  120.0  1200.0  40.0 -a_hmax, a_hmin, a_vert 

1S  2    0.000437917                       -nst, nugget effect 

1    0.03941259  90.0   0.0   0.0    -it,cc,ang1,ang2,ang3 

                   15.0   30.0  25.0   -a_hmax, a_hmin, a_vert 

1    0.003941259  90.0   0.0   0.0   -it,cc,ang1,ang2,ang3 

                    40.0   60.0  30.0  -a_hmax, a_hmin, a_vert  

2S  2    0.001825218                       -nst, nugget effect 

1    0.12776526  90.0   0.0   0.0    -it,cc,ang1,ang2,ang3 

                   35.0   40.0  40.0    -a_hmax, a_hmin, a_vert 

1    0.05293132  90.0   0.0   0.0    -it,cc,ang1,ang2,ang3 

                   50.0   200.0  50.0    -a_hmax, a_hmin, a_vert 
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Table 4-1  Indicator Variogram Models (continued) 
 

4S  2    0.000125341                        -nst, nugget effect 

1    0.008147192  90.0   0.0   0.0    -it,cc,ang1,ang2,ang3 

                    25.0   30.0  14.0   -a_hmax, a_hmin, a_vert 

1    0.004261608  90.0   0.0   0.0    -it,cc,ang1,ang2,ang3 

                    90.0   500.0  18.0  -a_hmax, a_hmin, a_vert  

5S  2    0.000158536                         -nst, nugget effect 

1    0.01189023  90.0   0.0   0.0      -it,cc,ang1,ang2,ang3 

                   20.0   25.0  16.0     -a_hmax, a_hmin, a_vert 

1    0.003804874  90.0   0.0   0.0     -it,cc,ang1,ang2,ang3 

                    200.0   500.0  18.0  -a_hmax, a_hmin, a_vert 

 

 

Table 4-2  Estimated Variances 

 
0p  1p  2p  4p  5p  

2 2 2× ×  0.2214 0.03740 0.1566 0.01327 0.01425 

4 4 4× ×  0.2130 0.03410 0.1496 0.01240 0.01306 

8 8 8× ×  0.1913 0.02590 0.1316 0.01020 0.0101 

16 16 16× ×  0.1531 0.01337 0.09950 0.006863 0.005626 

32 32 32× ×  0.0914 0.004157 0.04953 0.002839 0.001296 
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Figure 4-1  Ordinary Beta simulated histograms 
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Figure 4-2 Real versus Ordinary Beta simulated joint CDF’s 
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Chapter 5  An Application of Multiscale Facies Model   

5.1  Fitting the Local Multivariate Distributions of Facies Proportions  

In the previous chapter, the global multivariate and multiscale distribution of facies 

proportions is built as a function of means, volumetric support and a reference variogram 

model for each facies category at some volumetric support giving the variance-covariance 

structure. The volumetric scale is applied to infer the global distribution at a different 

volume support. The establishment of the location specific multiscale distribution, though 

more challenging, is often the goal. Similarly, it can be estimated by the local means and 

local variances. Supposed 1n  points and 2n  blocks are known, various Kriging 

approaches can be used to get the estimated local means of facies proportions based on 

the block and point data. Fitting the local variances is a challenge. One choice is the 

kriging variances.  

1) In simple block kriging algorithm with global means, the kriging estimator is: 
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with kriging variance: 



 59

1

2

2
1

1

( , ) ( , ( ), ( )) ( , ) ( , , ( ))

                 ( , ) ( , , ( ))

 

n
V V

n
Vv

k C k V V k C k V

k C k v V

α αα

β ββ

σ λ

λ

•=

=

= −

−

∑
∑

u u u u u u

u u      

2) In simple block kriging with locally varying means, we have: 
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with kriging variance: 
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3) The ordinary block kriging estimator takes the form: 
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Each equation for kriging variances is in fact a difference between two parts. For 

example, in simple block kriging, the kriging variance is the difference between     

( , ( ), ( ))C k V Vu u   

and  

1 2

1 1
( , ) ( , , ( )) ( , ) ( , , ( ))n n

V Vvk C k V k C k v Vα α β βα β
λ λ•= =

+∑ ∑u u u u u .   

The first part is the block average covariance over the estimated block, and depends only 

on the target volumetric support. The second part is the sum of variances and block 

average covariances of the data points and data blocks with kriging weights. In ordinary 

block kriging formalism, Lagrange constant kμ is also subtracted from the block average 

of covariances. Both the simple and ordinary block kriging variances can be considered a 

function of desired volumetric support, the univariate proportions, local data and 

variograms. As the volumetric support increases, the block average covariance will 

decrease and thus tend to decrease the kriging variances. The second part of kriging 

variances contains uncertainties based on the available data set. It is possible that the 

kriging variances either overestimate or underestimate the true variances. Further 
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discussion will be done in our sample studies in sections below. 

5.2  Model Description 

Two typical cases in multiscale facies modeling are shown in Figure 5-1. The left of 

Figure 5-1 illustrates a regular grid, where the point data and facies proportions of regular 

blocks at a certain volumetric support (say, the bigger blocks) are given and facies 

proportions of regular blocks at some other volumetric support (say, the smaller) are 

estimated. The right of Figure 5-1 shows the case of irregular grids where the point data 

and the facies proportions over blocks A  and B  are known, while facies proportions 

over blocks C , D and F are desired.  A general description of the multiscale facies 

model is suggested as follows: 

    The following data are supposed known: 

• Exact facies category at each data point. 

• Facies proportions:  

- Facies proportions for each regular grid data block over entire area of 

interest. Or 

- Facies proportions for each irregular block, as well as the (x,y,z) coordinates 

at all the finest grid nodes within the block. 

Blocks to estimate: 

• Regular blocks, block grid structures are given 

• Irregular blocks, (x,y,z) coordinates at all the finest grid node within the 

block are supposed to be known.  

    Based on the kriging proportion * ( , )Vp k u  (considered as mean proportion for a 

local block) and kriging variance, multivariate distributions for facies proportions 

1( ,..., )KP P  are built applying ordinary beta distribution. 

In order to better honor the spatial relationship of facies proportions, the sequential 

simulation approach is applied, where the local multivariate distribution of each desired 
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location is built conditioning on previously simulated blocks that are the most related 

covariate with current estimated/simulated block. Here all the blocks adjacent to current 

estimated block are considered. In a 3-dimensional space that is regularly gridded, each 

block has 26 adjacent blocks (either with common edge or common corner point), except 

those at the corner or on the boundary of the space. Either all or some of the previously 

simulated adjacent blocks can be used in the sequential simulation and the following 

steps are applied: 

1) A random path is built to reach all the blocks over the entire space of interest 

2) For the first block selected, local multivariate distribution is built based on the 

kriging estimated means and kriging variances from the original data and a 

realization is simulated. 

3) For any subsequent blocks, all or some of the adjacent blocks may be used for 

block kriging. A realization is drawn.  

4) step 3) is repeated until all blocks are randomly visited. 

5) A number, say 100, of realizations are simulated following steps 1) to 4). 

5.3  Sample Studies 

Here the facies category training image described in Chapter 1 will be considered. 

The examples are limited to cases where block data are collocated with the block to be 

estimated. The indicator variogram models are fitted based on the point data from the 

training image and are as shown in Table 4-1 in Chapter 4. 

5.3.1  Small Sample Cases 

A small sample is drawn from the training image. Suppose point data are available at 

locations (4,4,4), (4,8,4), (8,4,4), (8,8,4), (4,4,8), (4,8,8), (8,4,8), (8,8,8) and the facies 

proportions are to be estimated over blocks of scales 2 2 2× × , 4 4 4× × , 8 8 8× × , 

16 16 16× ×  and 32 32 32× × , but with the same upper corner at (4,4,4). Simple block 
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kriging algorithm is used and Tables 5-1 and 5-2 give the block average covariances and 

kriging variances. Figures 5-2 and 5-3 show the block average covariances and kriging 

variances along with volumetric scales. The block average covariances decrease as the 

volumetric scale increases. The kriging variances also decrease but fluctuate based on the 

kriging weights determined by the variance-covariance structure as well as the spatial 

relation of the data.  

Table 5-1  Block Average Covariances 

Scale p0 p1 p2 p4 p5 

2x2x2 0.2052 0.04002 0.1736 0.01153 0.01450 

4x4x4 0.1968 0.03672 0.1666 0.01066 0.01332 

8x8x8 0.1801 0.03032 0.1526 0.008977 0.01104 

16x16x16 0.1387 0.01646 0.1180 0.005261 0.006066 

32x32x32 0.07792 0.005058 0.06511 0.002134 0.002242 

Table 5-2  Kriging Variances 

Scale p0 p1 p2 p4 p5 

2x2x2 0.08216 0.02049 0.06472 0.006149 0.007311 

4x4x4 0.04100 0.008482 0.03140 0.002763 0.002973 

8x8x8 0.08042 0.01106 0.06729 0.003596 0.004111 

16x16x16 0.06119 0.004966 0.05089 0.001962 0.001814 

32x32x32 0.02688 -0.0000823 0.02153 0.0003268 0.0001374 

     A further look at the fit is taken from the following small samples regarding the 

estimation of one block at scale 16 16 16× ×  with the upper corner at (0,0,0) using 5 

sample points at different locations. Group 1) of data points are collocated or closed to 

the estimating block, say at: (4,8,4), (4,8,8), (20,12,12), (24,16,8), (16,16,24). Group 2) of 

points are farther, located at (32,64,32), (48,48,64), (36,64,48), (64,48,24), (16, 48, 24). 

Group 3) of data points are even farther, located at (96,64,32), (72,96,32), (64,84,28), 

(72,64,28) and (72,48,28) Also, collocated 32 32 32× ×  block data are used in the block 
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kriging.  

Tables 5-3 to 5-4 give the kriging matrices (right-hand-side “r” and columns “a” of 

upper triangle of the left-hand-side), kriging weights, kriging variances for these small 

samples. As the data points located farther to the estimated block, the values of 

corresponding terms in the kriging matrix are getting smaller and smaller except for the 

diagonal terms, the variances, which remain constant at a fixed volumetric support under 

a stationary semivariogram model. The Kriging weights reduce as the distances of data 

points from the estimated block increase. The Kriging variances are complicated, for 

some facies categories, they are increasing among these three groups; for other facies 

categories, they are decreasing.   

 

Table 5-3a  Kriging matrix for facies 0S  

 

 

Group 1 

 

    r(  1) = 0.1436  a=  0.2136 

    r(  2) = 0.1292  a=  0.1742 0.2136 

    r(  3) = 0.1257  a=  0.0972 0.0818 0.2136 

    r(  4) = 0.1029  a=  0.0794 0.0748 0.1606 0.2136 

    r(  5) = 0.0743  a=  0.0501 0.0302 0.0959 0.0609 0.2136 

    R(  6) = 0.0779  a=  0.0650 0.0539 0.0956 0.0833 0.0977 0.0779 

 

Table 5-3b  Kriging matrix for facies 0S : 

 

 

Group 2 

    r(  1) = 0.0341  a=  0.2136 

    r(  2) = 0.0327  a=  0.1847 0.2136 

    r(  3) = 0.0197  a=  0.0667 0.0823 0.2136 

    r(  4) = 0.0146  a=  0.0692 0.0826 0.1644 0.2136 

    r(  5) = 0.0113  a=  0.0329 0.0399 0.0987 0.0878 0.2136 

    r(  6) = 0.0779  a=  0.0586 0.0586 0.0338 0.0302 0.0252 0.0779 
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Table 5-3c  Kriging matrix for facies 0S : 

 

 

Group 3 

    r(  1) = 0.0084  a=  0.2136 

    r(  2) = 0.0084  a=  0.1262 0.2136 

    r(  3) = 0.0108  a=  0.0682 0.1227 0.2136 

    r(  4) = 0.0054  a=  0.0527 0.0880 0.1248 0.2136 

    r(  5) = 0.0012  a=  0.0531 0.0599 0.0365 0.0447 0.2136 

    r(  6) = 0.0779  a=  0.0166 0.0165 0.0201 0.0139 0.0058 0.0779 

 

Table 5-4  Kriging weight for facies 0S  

  Point 1 Point 2 Point 3 Point 4 Point 5 Collocated block 

Group 1 0.33939 0.15489 0.22266 -0.00188 -0.01806 0.36111 

Group 2 -0.06037 -0.09068 0.00545 -0.02216 -0.04806 1.13538 

Group 3 -0.02466 -0.00126 -0.02410 -0.01861 -0.00740 1.01562 

 

Table 5-5  Kriging variances 

 p0 p1 p2 p4 p5 

Group 1 0.07340 0.009464 0.06275 0.002758   0.003153 

Group 2 0.06451   0.01137 0.05507 0.002963 0.003685 

Group 3 0.06118 0.01140 0.05289 0.003102 0.003727 

5.3.2  Big Sample Case 

The example below represents a 256 256 32× ×  space drawn from the training 

image. The following data are known: 

1) facies category at each 4 4 4× ×  grid node  

2) facies proportions over each 32 32 32× ×  block in the entire space, only the 

block data collocated with the estimated block are used for each of the desired 

estimated block.   
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    Based on the above, the facies proportions over each 16 16 16× ×  block are 

estimated using both block kriging and sequential simulation approaches.  

5.3.2.1  Block Kriging Estimations 

Both simple block kriging and ordinary block kriging methods are used to estimate 

the means and variances of facies proportions * ( , )Vp k u  for each local block. Figures 

5-4 to 5-12 give the results.   

Cross plots of kriging facies proportions versus real values (Figures 5-4 and 5-5) lie 

around a 45º straight line, suggesting a good estimated result by both simple and ordinary 

block kriging methods. The histograms of kriging estimated facies proportions compared 

with the real histograms (Figures 5-6, 5-7) show that global marginal distributions are 

reproduced by the kriging results. The real global joint CDF’s are reproduced by both the 

simple kriging and ordinary kriging results (see Figure 5-8, the cross plots kriging 

estimated joint CDF’s versus real joint CDF’s). The scatter plots of residuals (kriging 

value minus the real values) versus kriging results in Figures 5-9 and 5-10 are evenly 

spread and are surrounding a horizontal line at zero, Figures 5-11 and 5-12 give 

distributions of residuals, showing that both ordinary block kriging and simple block 

kriging output reproduce real values well.  

5.3.2.2  Sequential Simulation 

One hundred realizations are simulated. As discussed above, the kriging variances 

may either overestimate or underestimate the variabilities of local facies proportions. The 

real local block variances are also unknown. One important reference is the variograms of 

the scaled up proportions. Let’s look at the reproduction of the semivariograms by the 

simulated realizations (Figure 5-13). 

The shapes of semivariograms are approximately reproduced by the simulated 

realizations but the values are higher than the true reference results at all lag distances 
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and for all facies categories. This may suggest a systematic overestimation of the 

variances. In order to solve this problem, the target local variances are reduced to some 

fraction of the kriging variances. Based on the shapes of the simulated semivariograms, 

we assume the real local variances of facies proportions are overestimated by the kriging 

variances to a similar extent over the entire area of interest. Two approaches are tried to 

adjust the local variances: 

In the first approach, the derived global variances 2 ( , )kD v Ω  are used. It is 

calculated from the variogram models at the reference scale using scaling laws, as 

described in Chapter 4. The global variances from a simulated realization 2ˆ ( )k vσ  are 

compared with 2 ( , )kD v Ω . When 2 2ˆ ( ) ( , )k kv D vσ > Ω  or when 
2 2

2

ˆ| ( ) ( , ) |
( , )

k k

k

v D v
D v

σ − Ω
Ω

 is 

greater than some given level, say 0.05, use factor 
2

2

( , )( )
ˆ ( )
k

k
k

D vf v
vσ
Ω

=  to adjust the 

target variances and redo the sequential simulation. This procedure is repeated until the 

simulated global variances are closed to the derived values 2 ( , )kD v Ω . But this method 

does not lead to a good fit in this sample. 

In the second approach, a series of fraction values 
n
m

 

( 2,3,...,10;   1, 2,...,m n m= = .) are applied as a variance reduction factor to each facies 

category, where the factor for one facies category may be different from others. The 

simulated variograms are compared with the reference variograms. Finally in this 

example, the factor with value of 
1
6

 applied to all facies categories leads to a pretty 

good result. Figures 5-14 to 5-19 give the final results based on simple block kriging with 

locally varying means (similar results are obtained from simulation based on ordinary 

kriging after adjusting the kriging variances).  

The cross plots (Figure 5-14) of simulated results versus real values are around the 

45º line; the global marginal histograms are reproduced (Figure 5-15); also cross plots of 
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simulated versus true joint CDF’s (Figure 5-16) show a good reproduction of the 

multivariate distribution by the simulated realizations; residuals (simulated value minus 

true) plots and residual histograms show they are centered at zero and has a reasonable 

distribution, suggesting a good fit by the simulated realizations (Figures 5-17 and 5-18).     

The above simulated histograms show that that the global variances of the 

proportions of all facies categories are reproduced by simulated realizations. Figure 5-19 

gives the reproduction of semivariograms. Here, after the adjustment of kriging variances, 

the variograms are well reproduced by simulated realizations. 

Test of Accuracy is performed on the simulated distributions. For a probability 

distribution (treated as continuous random variables), accuracy and precision are based on 

the actual fraction the true values falling within symmetric probability intervals of 

varying width *p . A probability distribution is accurate if the fraction of true values 

falling in the *p  interval exceed the *p  for all *p  within [0,1]; the precision of an 

accurate probability distribution is measured by the closeness of the fraction of true 

values to *p for all *p within [0,1] (Deutsch, 2002). One way to test the accuracy and 

precision is to check the distribution of the true quantile, the cumulative probability 

associated to each true value based on simulated realizations. That is, 

( ) Prob[ ]
kP kF x P x= ≤  for real facies proportion kP  at each local block conditioning to 

the simulated realizations. A probability distribution is accurate and precise if the 

cumulative probabilities associated to true values follow a uniform distribution (Deutsch, 

1996).  

Figure 5-20 gives the histograms of the cumulative probabilities (shown on 

horizontal axis) of true values based on the simulated realizations using sequential 

simulation from simple block kriging. The frequency at cumulative probability 1.0 is 

much higher than at those other values. We observed that most cumulative probability 

values 1.0 occur at the point where the true facies proportion is 1.0. Excluding those 
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points with true facies proportion equal to 1.0 and plotting histograms of the cumulative 

probabilities of the remaining points, approximate uniform distributions are obtained as 

shown in Figure 5-21. Such results suggest that the probability distributions from 

simulated realizations are accurate for facies proportions except those extreme values.  

Figure 5-22 shows the true and simulated maps of facies proportion 0P  in an 

arbitrary slice; the spatial distribution is reproduced. 

5.3.3  Discussion  

Both simple and ordinary block kriging algorithms work well in estimating the 

facies proportion in desired locations at certain volumetric support. In the simulation 

algorithm, the building of local multivariate distribution of facies proportions needs a 

further adjustment on the kriging variances. In the above sample study, we observe that 

the shapes of the simulated semivariogram based on the kriging variances are above and 

approximately parallel to the real reference semivariograms. Thus we assume the real 

local variances of facies proportions are overestimated by the kriging variances to a 

similar extent over the entire area of interest. The true semivariograms are used as a 

reference and this leads to a factor (about 1/6) applied to decrease the kriging variances.  

In practice, the real semivariograms of the facies proportion at the desired 

volumetric scale are usually unknown. The variogram models can be built based on the 

semivariograms at the reference scale following the scaling laws, as described in Chapter 

4, and can be taken as a reference to adjust the kriging variances, following the similar 

method as using the reference variograms. In case a common factor is not suitable for all 

locations, further information is required to estimate or correct the local variances in 

order to fit the ordinary beta distribution for each local block. Correctly estimating the 

local variances remains a tricky question. No general solution is available by now and 

further research is desired.  
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5.4  Summary of Results  

Block kriging approaches using simple kriging and ordinary kriging algorithms are 

efficient in estimating the facies proportions at unknown block locations of desired 

volumetric support based on the data of different scales, including point data and 

collocated block data of difference volumetric supports. 

Ordinary beta distribution is efficient in fitting the multivariate distribution of facies 

proportions for any unknown local blocks and thus can be applied in sequential 

simulation to build the multi-realization maps of facies proportions provided the means 

and variances of facies proportions can be obtained.  

One big challenge in applying the ordinary beta distribution in multivariate facies 

modeling is how to determine the appropriate local variances to build the distribution. 

Kriging variances are one important and reasonable reference and are determined by the 

volumetric supports, variance-covariance structure and spatial distribution of data. But 

kriging variances alone do not lead to a good fit. Further adjustments are still required 

based on variogram models or other information. 

 

 

 

    
Figure 5-1  Multiscale facies models 
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Figure 5-2   Block average covariances 
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Figure 5-3   Kriging variances 

 

 
Figure 5-4  Kriging result versus real facies proportions, from simple block kriging  

    with locally varying means 
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Figure 5-5  Kriging result versus real facies proportions, from ordinary block kriging 

       

 

 

Figure 5-6  Kriging estimated global histograms, compared with the real histograms, from  

simple block kriging with locally varying means 
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Figure 5-7  Kriging estimated global histograms, compared with the  

real histograms, from ordinary block kriging 
 
 

  
Figure 5-8  Kriging joint CDF’s versus real joint CDF’s 
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Figure 5-9   Residuals ( kriging output – real values ), from simple block kriging with  

locally varying means 
 

 

Figure 5-10   Residuals ( kriging output – real values ), from ordinary block kriging 

 

 

Figure 5-11   Histogram of Residuals ( kriging output – real values ), from simple block  

kriging with locally varying means 
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Figure 5-12  Histogram of Residuals ( kriging output – real values ),  

from ordinary block kriging 
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Figure 5-13  Semivariograms reproduction from simulated realizations, based on simple block 

kriging with locally varying means. Blue and yellow dash-point curves give, respectively, the real 

variograms in X and Y directions. According to the variogram maps, X direction is the major 

direction of continuity in the training image. The light blue and red dash curves give, respectively, 

the simulated variograms in X and Y directions. 
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Figure 5-14  Simulated results versus real values, based on simple block kriging  

with locally varying means 
 
 

 

 
 

Figure 5-15  Global histograms from simulated realization, compared with the  

real, based on simple block kriging with locally varying means 
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Figure 5-16  Cross plots of real versus simulated Global joint CDF’s, based on  

simple block kriging with locally varying means 

 

 
Figure 5-17  Residual (Simulated value – real value), based on simple  

block kriging with locally varying means 
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Figure 5-18  Histograms of Residuals (Simulated value – real value), based on  

simple block kriging with locally varying means 
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Figure 5-19  Reproduction of semivariograms by simulated realizations, based on simple block 

kriging with locally varying means. Blue and yellow dash-point curves give, respectively, the real 

variograms in X and Y directions. According to the variogram maps, X direction is the major 

direction of continuity in the training image. The light blue and red dash curves give, respectively, 

the simulated variograms in X and Y directions. 
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Figure 5-20  Histogram of cumulative probabilities associated with the real facies proportions 

based on the simulated realizations (based on simple block kriging with locally varying means) 
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Figure 5-21  Histogram of cumulative probabilities associated with the real facies  

proportions based on the simulated realizations, the points with facies proportion  

1.0 excluded. (Based on simple block kriging with locally varying means) 
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Figure 5-22 True versus simulated maps of facies proportion 0P    
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Chapter 6  Further Discussions on Multiscale Facies 

Distributions 

6.1  Proportions and Probabilities 

The key question in multiscale facies modeling is to estimate and simulate the 

values and the three dimensional distribution of the facies proportions 

1( , ) ( , )k V
V

p p k I k dV
V α= = ∫u u .  

For any given local block at some volumetric support, the values of proportions kp ’s, 

( 1, 2,...,k K= ) are unknown and are estimated or simulated. Various kriging approaches 

have been applied and the kriging estimates, say *
( )k Vp ’s are treated as the estimated 

means of facies proportions for facies categories kS ’s. This is reasonable because they 

are unbiased. For example, the simple kriging estimator has the form: 

1 2

1 2

* *
( ) 1 1

1 1

( , ) ( , ) ( , ) ( , ) ( , )

                         [1 ( , ) ( , )] ( , )

n n
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•= =

= = +

+ − −

∑ ∑
∑ ∑

u u u u u

u u u
    

where ( , )m k u denotes locally varying mean for variable kP  and v the scale support of 

block data. The expected value of *
( )k Vp  can be derived:  
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That is, *
( )k Vp  is an unbiased estimator of the local means of facies proportion kP . 

On the other hand, we should realize that in most cases, it is not an estimator of the 

facies proportion itself. For example, at point scale the means of facies proportions take 

some value within interval [0,1] while the exact facies proportions are either 0 or 1. But 

usually, *
( )[ ]kE p •  does not equal 0 or 1. In fact, such an estimator contains information 

in two distinct and equally important aspects: 1) the facies proportion ( , )Vp ku  itself 

and 2) the probability that the facies proportion variable kP  take some value. The 

information of these two parts is often combined. 

Given some volumetric scale V , there is a set of possible values { }1 20, , ,...,1.0V V  

for the facies proportion. Using qx =
q
V

, 0,1,...,q V=  to denote the possible values of 

facies proportions at volumetric support V , the expected value of facies proportions 

have the form  

                       ( )0
[ ] Prob[ ]V

k k V q qq
E P P x x

=
= =∑ i . 

This is a linear combination of all possible values with the weights to be their 

probabilities and *
( )k Vp  is an unbiased estimator of this combination.  

Now, focus on just one facies category kS . Consider the facies proportions at two 

extreme volumetric supports V =0 and V = ∞ . The first case represents the point scale 

and the second case can be regarded as the entire area of interest, V = Ω . At a very large 

scale, there is exactly one unit in the population, that is, the entire space. All other values 

of qx  have the probability 0 except one, say *q
x , with probability 100% . In this case, 

*
*

( ) [ ] 100%k V k q
E p E P x⎡ ⎤ = =⎣ ⎦ i  and *

( )kp ∞  or *
( )kp Ω  is the estimate of this facies 

proportion value. At the point scale, the facies proportion ( , )P k• u is the same as the 

facies indicator ( , )I ku  and takes exactly 0 or 1. There is a large population of points 
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and different points might have different indicator values. 

Here *
( ) ( )[ ] Prob[ 1.0] 1.0k V k k VE p E P P⎡ ⎤ = = =⎣ ⎦ i . *

( )kp •  is therefore the estimate of 

probability ( )Prob[ 1.0]k VP = . This is in fact the probability that facies kS occurs at the 

point. These two extreme cases are relatively simple and clear. At other volumetric scales 

0 V< < Ω , the probabilities and the proportions are mixed. Figure 1-5 in Chapter 1 gives 

the histograms of proportions for facies 0S  at various volumetric supports. Note that at 

scales 2 2 2× ×  and 4 4 4× × , about 80% or 90% of the real facies proportion values 

are either 0 or 1. In these cases, *
0( )Vp  can give a very good estimation about probability 

that facies category 0S  occupies the whole block and the probability that no facies 

category 0S  occurs in the block. At scale 8 8 8× × , 60% percent of facies proportions 

take values of either 0 or 1. At scale 64 64 64× × , about 60% of the real facies 

proportion values go between 50% to 70%, surrounding the means of the facies 

proportion 66.48%. Similar observations are true for other facies categories and other 

training images. 

The uncertainty also depends on the volume. At point scale, there is a large 

population of points taking values of either 0 or 1, each has some probability. The 

uncertainties, that is, variances of estimated facies proportions, are the largest. As scale 

increases, a series of facies proportion values occur but their variance decreases. At a very 

large scale V = Ω , there is exactly one unit in the population and no uncertainty of this 

type. This can be illustrated by dispersion variance defined as: 

2 2
( ) ( )

1( , ) [ ]k V kD V E P p
N Ω

⎧ ⎫Ω = −⎨ ⎬
⎩ ⎭
∑ .  

Here ( )kp Ω is the means of facies proportion ( )k VP over the entire area of interest. At 

point scale, ( )k VP = ( )kP •  takes either 0 or 1, while at various other scales 0V ≠ , more 

values of ( )k VP  are larger than 0 or smaller than 1 and getting closer to the means. For 
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any fixed global mean ( )kp Ω , 2
( ) ( )[ ]k V kP p Ω−∑  is the largest when 0V = and will 

decrease as V increases.  

Another source of uncertainty comes from the modeling and estimating approach 

itself. Taking as an example the simple kriging algorithm, just as discussed in previous 

chapter, the kriging variance is the difference between two parts. The first part is the 

block average covariance over the estimated block and is dependent on the volumetric 

support. The second part is the sum of variances and block average covariances of the 

data points and data blocks with kriging weights and is determined by spatial relationship 

of the data with estimated block, as well as the variance covariance structure used. As the 

desired volumetric support increases, the block average covariance decreases and thus 

tends to decrease the kriging variance and thus decrease the uncertainty.  

6.2  Facies Proportion Distribution Conditional on Local Data 

The facies proportion distribution of a block is conditional on the information (data) 

available regarding this block. In the training image in this thesis, for block of each 

desired volumetric scale, there is a global distribution as described in Chapter 1 and the 

marginal CDF’s are as listed in Figure 6-1. When there is no local information, the block 

is treated as one unit among the population following the global distribution. Based on 

some data regarding that local block, the conditional distribution changes. In case of 

perfect knowledge, we are 100% sure that the facies proportion for category kS  is  

*q
x =

*q
V

, for a unique value *  within 0,1,...,q V  and distribution of kP  becomes  

*

*

0       
( ) Prob[ ]

1       
q

k k
q

x x
F x P x

x x

∀ <⎧⎪= ≤ = ⎨ ∀ ≥⎪⎩
.  

The shape is shown in Figure 6-2. Different blocks might correspond to different values 

of *q
x , but for a given block, this value is unique.  



 89

The above paragraph discusses two extreme cases: 1) there is no local information 

about a block; 2) full information is available. Usually, some information is available but 

not full. In this case, the possible value of facies proportion for category kS is not unique 

but is part of the population with the unconditional global distribution. Here are three 

examples: 1) one point known: suppose among the regular grid in the training image, it is 

known that category 0S  occurs at the north-west top corner of a block; 2) two points 

known: suppose the facies category at the middle of the block is also 0S ; 3) three points 

known: besides on 1) and 2), suppose it is known that the facies category at the south-east 

bottom corner is 1S . Figures 6-3 to 6-5 give the marginal CDF curves for 0P  at 

different volumetric scales and Tables 6-1 and 6-2 give the means and variances. Also 

Figure 6-6 gives the marginal histograms.  

 

Table 6-1 Means of 0P  conditional on the points known 

 2x2x2 4x4x4 8x8x8 16x16x16 32x32x32 64x64x64 

3 points 0.9789 0.866 0.7966 0.7487 0.7958 0.6802 

2 points 0.9956 0.9814 0.9565 0.8951 0.828 0.7295 

1 points 0.9403 0.9262 0.8616 0.7731 0.6989 0.6600 

 

Table 6-2 Variances of 0P  conditional on the points known 

 2x2x2 4x4x4 8x8x8 16x16x16 32x32x32 64x64x 64 

3 points 0.004476 0.027656 0.023378 0.03052 0.028527 0.010588 

2 points 0.00117 0.004436 0.00996 0.023348 0.028968 0.009722 

1 points 0.0147 0.038064 0.063303 0.073984 0.056787 0.020909 

 

The following properties are observed: 

a) At small scale, the histograms often show a unimodal shape rather than bimodal as in 

global distribution, but with a stronger skew. 

b) The means are no longer constant. At small scale, means get close to either 0 or 1 
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while at large scale, they converge to the global means 

c) The variances decrease as more points are known, but they are not strictly decreasing. 

As the local data increase, the mean of conditional distribution of facies proportion 

will get closer to the truth and the uncertainty will decrease.      

Ordinary beta approach can also be applied to fit the multivariate distribution 

conditional on the data if the means and variances can be obtained. Figure 6-7 compares 

the simulated histograms with the true in some cases for facies proportion 0P  and shows 

a well reproduction of the distributions. 
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Figure 6-1 Global distributions of 0P  (based on no local information) 
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Figure 6-2 Distribution of kP  when perfect knowledge is available about a block 
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Figure 6-3 Distribution of 0P when one point is known in the block 
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Figure 6-4  Distribution of 0P when two points are known in the block 
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Figure 6-5  Distribution of 0P when three points are known in the block 
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Figure 6-6  Histograms of 0P when one point is known 
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Figure 6-7  Ordinary Beta simulated histogram (left) compared the real (right).  

Top and middle row: three points known; Bottom row: one point known  
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Chapter 7  Conclusions and Future Works 

The multivariate distributions of facies indicators and facies proportions are volume 

dependent and determined by mean, the volumetric support and the variance-covariance 

structure of facies categories within the domain of interest. The global means of facies 

proportions are independent of the volumetric support while the variances of the facies 

proportions decrease with an increase in the volumetric support. Due to constant sum 

constraints, a negative covariance often occurs between the proportions of two facies 

categories within the space of interest.  

Logratio transformation of facies proportions will guarantee the satisfaction of order 

relation constraints when applied in kriging or other estimation approaches. However, 

zero-proportions will lead to problems. Furthermore, the nonlinear nature of logratio 

transformation always leads to geometric average results when back transforming an 

arithmetic average of logratio values thus leading to significant bias when it is used to 

estimate the mean that is an arithmetic average.  

The beta distribution and the ordinary beta distribution are shown to efficiently fit 

the marginal and joint distribution of facies proportions at different volumetric supports. 

Block kriging approaches using simple kriging and ordinary kriging algorithms estimate 

the facies proportions at unsampled block locations based on the data of different scales, 

including point data and collocated block data of difference volumetric supports.  

One big challenge in applying the ordinary beta distribution in multivariate facies 

modeling is how to determine the appropriate local variances to build the distribution. 

Kriging variances are one important and reasonable reference and are determined by the 

volumetric support, variance-covariance structure and spatial distribution of data. But 

kriging variances tends to overestimate or underestimate the local variances. Further 

adjustments are required based on variogram models or other information.  

Several factors determining the uncertainty of facies proportions include: 1) 
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volumetric support, 2) spatial distribution of available data and variances-covariance 

structure within the entire area, 3) modeling and estimating approach itself and 4) amount 

of local data and local information available. In general, at a larger volumetric support, or 

having more local data or local information available, uncertainty tends to decrease.  

The following future works are desired: 

First, as discussed in Chapter 5, further research is needed on estimating and 

adjusting the local variances which are required to fit the local facies distribution. Kriging 

variances are a reference in estimating the local variances but further adjustments are 

needed. Supposed there is a factor ( , )kf vu such that 2 2ˆ( , ) ( , ) ( , )k k kv f v vσ σ= ⋅u u u , 

where 2 ( , )k vσ u is the true local variance for facies category kS and 2 ( , )k vσ u is the 

kriging variance, the factor ( , )kf vu may depend on i) the location of the estimated block, 

ii) the magnitude of kriging estimate, iii) the conditioning data, iv) the multivariate 

distribution of the facies proportion and v) other factors.  

Second, the research in this thesis is based on analysis and process on the training 

images. Application in industrial and production practices is still subject to further 

development and test. 
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